Jump to content

esspho

Members
  • Content Count

    300
  • Joined

  • Last visited

  • Days Won

    7

Reputation Activity

  1. Awesome
    esspho reacted to Radix for an article, Static Prop Combine in CS:GO   
    Static Prop Combine in Counter-Strike: Global Offensive
    A step by step guide
    thanks to @untor
    What is Static Prop Combine?
    Static prop combine, or informally speaking "autocombine", is a new feature in CS:GO's VBSP.
    It allows VBSP to merge together multiple static props into a single static prop, either automatically or with user-defined rules.

     
    What is static prop combine good for?
    Static prop combine is another feature to optimize your maps. Most people might think that "the less geometry rendered the better". So if you use small props, it's easier to hide what is not visible.
    That's not wrong. But there is a problem:
    In Source, there is one draw call per model per material. And these draw calls are very performance-hungry.
    That's where static prop combine comes into play:
    By combining models sharing the same materials, less draw calls are performed, which greatly helps optimization.
    Valve has stated that Nuke runs 40% faster after they implemented static prop combine.
     
    How do I use static prop combine?
    The static prop combine feature was added in 2016 with the release of the reworked de_nuke. But since then it was not (?) used by community mappers, there are no (?) guides on the Internet except this documentation.
    @untor helped me to make static prop combine feature do its job. So we decided that it's time to publish a step by step guide how to use static prop combine.
    We presuppose that you are already familiar with the creation of props  
    0. Backup your CS:GO folder (optional)
    We do not take responsibility for any damage done to your files. So it's time to backup your game files now if you have not already. In general we recommend to duplicate your "Counter-Strike Global Offensive" folder, so you can use a separate installation of CS:GO for mapping while keeping the other one clean for playing.

    1. Source files
    You must have the source files of the models you want to be combined. Usually 3 files for each prop:
    *.qc reference mesh (supported formats are *.smd, *.dmx and *.fbx) physics mesh So if you want to combine props made by you, you should already have these files.
    If you want to combine props made by Valve, you will need to decompile them first. And then change the names - otherwise, the version of the prop that is packed in the VPK would overwrite your version.
        
    In this guide we will use two different pipe props:

    You can download the example files here (contains the *.qc and *.smd files) :
    example.zip
     
    Browse to "...\Steam\steamapps\common\content\csgo\"
    Create a folder "models". In our example we have another subfolder "example". Save the model source files there:
     

    These are our QCs:
    pipe_straight.qc
    pipe_curved.qc

    Notes:
    Restrictions for the *.qc:
    Only the first $body is recognized. $model is not recognized. $appendsource and $addconvexsrc are not recognized. You can only use $upaxis Z or Y.  
    2. Compile your props
    Your models have to be compiled from this directory now:
    Open your model compile tool (I use Crowbar)
    Then browse to "...\Steam\steamapps\common\content\csgo\models\example\" and compile the QCs.
    The compiled model files should be in "...\Steam\steamapps\common\Counter-Strike Global Offensive\csgo\models\props\example\" now.
     
    3. spcombinerules.txt
    Browse to "...\Steam\steamapps\common\Counter-Strike Global Offensive\csgo\scripts\hammer\spcombinerules\"
     

    There you will find "spcombinerules.txt". In this file the combine rules for Valves props are defined. It is a standard KeyValues-formatted text file. Each entry follows the format below.
    Rename it to "spcombinerules_valve.txt" (or whatever you want) and create a new text file "spcombinerules.txt".
    Then copy and paste the following into "spcombinerules.txt" and save it.
     

    4. Stub QCs
    Stub QCs are QCs which contain a base template for the QCs which static prop combine generates. Generally, they should only include:
    $staticprop $surfaceprop $cdmaterials Any $texturegroups used by the models. Browse to "...\Steam\steamapps\common\Counter-Strike Global Offensive\csgo\scripts\hammer\spcombinerules\qc_templates\".
    In our example we create a new subfolder "example", open it and then create a text file and rename it to "pipe_combine.qc":


    Copy and paste the following into "pipe_combine.qc" and save it:
     
    5. Compile your map
    Add some of our example props to your map in Hammer and compile the map.
    In our example we use the following compile parameters for VBSP
    Compile parameters (full list here) :
    -StaticPropCombine: Merges static props together according to the rules defined in scripts/hammer/spcombinerules/spcombinerules.txt. This lowers the number of draw calls, increasing performance. It can also be used to lower the number of static props present in a map.
    -StaticPropCombine_AutoCombine: Automatically generate static prop combine rules for props that VBSP deems should be combined. Note: This does not write to spcombinerules.txt.
    -StaticPropCombine_ConsiderVis: Instead of using the distance limit, combine all props in the group that share visclusters.
    -StaticPropCombine_SuggestRules: Lists models sharing the same material that should be added to spcombinerules.txt.
    -StaticPropCombine_MinInstances <int>: Set the minimum number of props in a combine group required to create a combined prop. Tip:Valve had this set to 3 for the new Dust 2.
    -StaticPropCombine_PrintCombineRules: Confirm: Prints the combine rules?
    -StaticPropCombine_ColorInstances: Instances of combined props get colored.
    -KeepSources: Don't delete the autogenerated QCs and unpacked model files after finishing.
    -CombineIgnore_FastReflection: Combine props, even if they have differing Render in Fast Reflections settings.
    -CombineIgnore_Normals: Combine props, even if they have differing Ignore Normals settings.
    -CombineIgnore_NoShadow: Combine props, even if they have differing Disable Shadows settings.
    -CombineIgnore_NoVertexLighting: Combine props, even if they have differing Disable Vertex lighting settings.
    -CombineIgnore_NoFlashlight: Combine props, even if they have differing Disable flashlight settings.
    -CombineIgnore_NoSelfShadowing: Combine props, even if they have differing Disable Self-Shadowing settings.
    -CombineIgnore_DisableShadowDepth: Combine props, even if they have differing Disable ShadowDepth settings.
     
    6. Success?
    The combined props look exactly like the single props. So how can you be sure that the static prop combine process was successful?
    - Once the map is compiled, the combined props will be packed into your *.bsp automatically.
    - If you add -keepsources to the compile parameters, you can also find the combined props in "...\Steam\steamapps\common\Counter-Strike Global Offensive\csgo\models\props\autocombine\*name of your map*\"
    and their QCs in "...\Steam\steamapps\common\content\csgo\models\props\autocombine\*name of your map*\".
    - If you add -StaticPropCombine_ColorInstances to the compile parameters, instances of combined props are colored in CS:GO.
     
    7. Additional notes
    Hammer:


    - You can manually disable static prop combine for individual props with the "Disable Prop Combine" keyvalue.
    - Prop scaling (Uniform Scale Override) is not supported yet (?)
    - If the original props don't have a collision model, you will have to set collisions to "Not Solid" in the properties. Otherwise the combined prop will be solid (automatically generated collision mesh; causes problems).
    - If the props differ in specific keyvalues, in most cases the default (e.g. Alpha) or the higher value will be used (e.g. fade distances)
    - Props that differ in the below keyvalues will NOT be combined, unless manually overridden with the appropriate VBSP option:
    Render in Fast Reflections (-combineignore_fastreflection) Ignore Normals (-combineignore_normals) Disable Shadows (-combineignore_noshadows) Disable Vertex lighting (-combineignore_novertexlighting) Disable Flashlight (-combineignore_noflashlight) Disable Self-Shadowing (-combineignore_noselfshadowing) Disable ShadowDepth (-combineignore_disableshadowdepth) - Props that differ in the below keyvalues will NOT be combined:
    Skin Color Disable Flashlight  
    TO DO
    some fps tests with an actual map! which gives better results: " -StaticPropCombine_ConsiderVis" or prop combining based on distances? Is there a console command to display the number of performed draw calls/props? ...  
    ______________________________________________________________________
    Sources:
    https://developer.valvesoftware.com/wiki/Static_Prop_Combine
    https://developer.valvesoftware.com/wiki/QC
    https://developer.valvesoftware.com/wiki/VBSP
     
  2. Like
    esspho reacted to THE OWL for an article, dz_blacksite - info about use "4wayblend" textures #2   
    < Previous tutorial
    Post format: RED - LINK ; PURPLE - DELETE THIS! ; OTHER COLORS - TEXT ; QUOTE - Important text!

    Hello, again!
    Last time I talked about how to add grass from the new game mode to the map, now I can talk about how to remove restrictions on the placement of grass and talk about custom textures. [In the previous tutorial I forgot to do it]

    How to remove restrictions to grass placement?
    1) Open your GCFSCAPE and after open pak01_dir.vpk in Counter-Strike:Global Offensive > cs:go > pak01_dir.vpk go to materials > hr_massive and found there "broken_road_1_4wayblend_1.vmt". Extract that file into your materials folder [Example: "cs:go > materials > theowl_res"]. (Rename that file, if you need that)

    2) Return to GCFSCAPE. Find into "materials > detail" .vmt file "detailsprites_survival" and extract him to "cs:go > materials > detail". 
    3) Open your extracted file ("detailsprites_mycustommap.vmt") and delete that lines:
    $worldspacetint "detail/test_massive9_grass_tint"
    $worldspacetype "detail/test_massive9_grass_type"
    (These are textures that help control grass levels on map. Experiment with this yourself)
    [$basetexture inside this file, that grass textures. Replace it, if you have custom grass]


    4) Go to "Counter-Strike: Global Offensive > cs:go" and find there "detail.vbsp"; Open him (You can use Notepad++) and find there the cluster "survival_grass_2". Copy that and paste after that cluster, but with new name (Example: survival_grass_theowl);
    Find line (inside the cluster) "associated_material" "detail\detailsprites_survival" and replace "detail\detailsprites_survival" to your custom texture which you created recently (Example: "associated_material" "detail\detailsprites_mycustommap")


    5) Inside your custom texture file ("broken_road_1_4wayblend_1.vmt") you should replace "%detailtype survival_grass_2" to "%detailtype [your name of cluster inside detail.vbsp]" (Example: %detailtype survival_grass_theowl)

    DOWNLOAD "GCFSCAPE" (>) DOWNLOAD "VMT EDITOR" (>) DOWNLOAD NOTEPAD++ (>)  

    How to replace textures?
    Everything is as usual here. Open the .vmt file with "4wayblend" (Example: "broken_road_1_4wayblend_1.vmt") and change everything as you need.

    Experiment with it and create cool maps! 😛
     
  3. Like
    esspho reacted to THE OWL for an article, dz_blacksite - info about use "4wayblend" textures   
    Next tutorial > [dz_bs - info about use "4wayblend" textures #2]

    Hello! On Mapcore for the first time, so I don’t know if you write something like that here. In general, I recently encountered a problem I had been thinking about for a long time, and the solution was the simplest...

    4wayblend textures stumped me and I didn't understand how to work with them. Since I could not find any articles about this issue, I decided to write about them.

    What if the texture details don't work?
    In order for 4wayblend textures to use grass, you must write the path to these details in the map parameters. (The path you must follow is shown below)

    Find a button "Map" on top panel in Hammer World Editor > Further Map Properties > Detail Material file > detail/detailsprites_survival (Put this path inside "Detail Material File")
    (!) To set the grass, use "Paint Alpha"


    How blend multiple textures?
    Go to the settings [displacement] and select there [Sculpt], then find the button [Blend] and there select the desired texture. (Use the left mouse button to paint, and clamping the right one will reduce the radius of the paint area)

    (!) If the camera mode in 3D view is set to "3D Shaded Textured Polygons", then you will not see the drawn part of the texture. Camera mode should be set to "3D Textured" when drawing

  4. Like
    esspho reacted to Radu for an article, 2018: Mapcore's Year in Review   
    Keeping with tradition, I'd say it's about time we took a look at what our community has achieved throughout the year. If last time I was saying how 2017 was a year of immense growth, then 2018 was surely one of significant change. And it hasn't been without its troubles and anxious moments. No change ever is, but I believe it to be for the best. We've seen some of our friends become parents, change work fields or get their first job in the industry. We've even seen a few pursue their dream projects. And for that, we have to applaud them. It takes courage to keep moving forward and to realise when it's time for something new. In the meantime, I hope this article inspires you and I wish everyone 
    good luck!
     
    2018: Mapcore's Year in Review
     

    SteamVR - Gulping Goat Space Farm
    by @Steve, @marnamai, @The Horse Strangler, @Sersch and others at Scraggy Rascal Studios
    produced in collaboration with Valve
    "Scraggy Rascal has been working with Valve to create all new SteamVR content, we've been given a lot of liberty to create these locations. Our goal was to create interesting and fun locations for the player to explore. These projects, over the last couple months, have been a crash course in Source 2,VR, project management, delivering within deadlines, working together as a team and personal growth. It has been an invaluable experience and great opportunity ... and we're just getting started!" - marnamai
     

    Darksiders III - Art
    by @The Horse Strangler and others at Gunfire Games
    "Probably one of the biggest challenges the artists and designers faced on Darksiders 3 was working with both a platforming and fully connected streamed world. This meant that everything exists all the time. While we streamed levels in and out, areas couldn't intersect and we couldn't do the classic "Small exterior, big interior" swap. This was especially challenging because of how much verticality our design must support. We had a few "vistas", but for the most part every aspect of the level was accessible. If you can see it, you will likely be able to get there, jump on it, fight around it, etc. Fury, the main playable character can double jump, swing, float, glide and even rocket jump over 10 meters high. Personally for me it completely changed how I looked at art filling up a space. Every single mesh we placed impacted design. Art was design, and design was art." - The Horse Strangler
     

    Europa
    by @[HP]
    "Europa is a relaxing narrative experience. The goal with this game is to offer just enough challenge that its rewarding to get from one area to the other for more than just the visuals by using environmental hazards, platforming sequences and light puzzles that you can beat by exploring.The game is split into linear sections and wider areas, that's at the core of the game and as you play, you keep improving your characters moving ability, which will further exploration and give you the ability to solve newer light puzzles. There's none of the typical character upgrading systems, rather, the levels will offer the incremental challenges and the sense of progression. Europa's main focus lies in environmental storytelling and immersing the player in it's universe with passive storytelling, evoking awe and bliss with colorful watercolor-like art and music." - Helder Pinto
     

    Counter-Strike: Global Offensive - Turnpike
    by @Squad
    "For a while the "Highway Restaurant" theme has been sitting in my little Concepts.txt file. When the Wingman Contest was announced, it felt like the perfect opportunity to turn this idea into a map, as its relatively small size would be fitting for the Wingman gamemode. The casual nature of Wingman made me add some elements that I would not normally add to, let's say, a Defusal map, like the TF2-esque team color coding (albeit subtle), the moving vehicles and the silly bomb target. Additionally, since the playable space is (almost) completely indoors, making it nighttime felt right, as it both emphasizes the interiors and makes for an atmospheric blorange background." - Squad
     

    Dying Light - A New Hope
    by @will2k
    "A full-fledged custom single player campaign that ties in to the original story of the main game. It will see the main protagonist, Kyle Crane,leaving the City for the countryside to search for a specific elusive medicinal herb and bring it back to Dr. Camden who believes it could be the cure to the Harran Virus. This campaign is a one man show as I’m doing everything myself: level design, environment art/detailing, story creation, scripting/quest creation, custom dialog, custom audio, custom materials/textures, custom foliage systems, custom brushes for terrain painting/sculpting, lighting, manual nav mesh tuning, scripted NPCs…" - will2k
     

    Prodeus
    by @General Vivi and Michael Voeller
    "Prodeus is the first person shooter of old, re-imagined using modern rendering techniques. Oh, and tons of blood, gore, and secrets. Creating Prodeus has meant a lot to us over the last year. It feels great to finally be doing something for ourselves. It can be pretty ambitious at times since there are just two of us, but I’m confident we can pull it off. Keep an eye out for the end of February for a big announcement." - General Vivi
     

    Counter-Strike: Global Offensive - Ruby
    by @catfood
    "When I was on vacation in Portugal years ago I was so impressed by the city Lisbon that I really wanted to build a map that has the same vibe. At the time I was already working on different projects so I decided whenever I got enough time to work on a map this size I would go back. So early 2017 the moment was finally there, I went back to Lisbon to shoot (~2000) reference photos then made a list of things that are iconic for Lisbon and started working on Ruby. Adding a lot of height differation, warm colors, tile patterns and ofcourse trams was essentiental to get the Lisbon vibe." - catfood
     

    Subnautica
    by @dux, @PogoP and others at Unknown Worlds Entertainment
    "A mix of Survival, story, mystery, resource gathering, base building with some accidental horror and plenty of deep, deep water. We had not long finished up with Natural Selection 2 and were hungry to develop a different kind of game. During development we were (and still are) a small team but the game kept getting bigger and grew into something far larger in scope than originally planned. So we soon realised that what we had could be turned into something really unique if we put our heads down and just cranked on it." - dux
     

    Unreal Tournament 4 - Chamber
    by @Ubuska
    "I used Halo and Warframe artstyle as a reference. The goal of this project was to make fun and cool looking map with 100% custom art that is 100 mb in file size. To achieve that I used several advanced techniques such as custom vertex normals, deferred mesh decals, no bake, tiling base materials and masks. There are basically 5 or so texture maps used in the entire map,  most of the filesize space was taken by lightmaps. I learned a lot doing this project in terms of composition, art direction and optimization. Hope you enjoy this map as much as I do!" - Ubuska
     

    Counter-Strike: Global Offensive - Pitstop
    by @Quotingmc and Quadratic
    "It is not often that CS: GO receives a new game-mode, especially one as competitively focused as Wingman. I was understandably pleased at the announcement of the 2018 CSMapMakers contest for the mode. Pitstop was my entry where I set out to create a thematically bold centre piece for my portfolio. With the help of my teammate Quadratic and support from multiple Mapcore members, I learnt a lot about taking a level from a simple blockout to completion; I can say for certain I’m thrilled with the end result!" - Quoting
     

    Black Mesa - Xen
    by @JeanPaul, Adam Engels and others at Crowbar Collective
    "While building Xen we had to design, iterate, and iterate (then iterate some more). We took what we thought we knew, and put it to the test. We learned how design and scope work together, and how to build momentum as a team. We are extremely proud of what we have accomplished over the year(s)! Despite the long and occasionally frustrating timeline, it has been a real testament to the commitment that this team and this community have for Half-Life." - Adam Engels
     

    Unreal Engine 4 scene
    by @Vorontsov
    "So I decided I would step out of my comfort zone and create a small environment in an engine I've never used before, UE4. Although I think I did a fairly decent job at the time there were ultimately many nuances I could have done better, but that is the artist dilemma. This project taught me the value of properly blocking out your environment, gathering as many references as you can and to have patience and not rush through assets, when breaking any of these rules I was punished for it. Stay tuned for my next project which will be a giant mech, coming soon Valve time TM." - Vorontsov
     

    Counter-Strike: Global Offensive - Opal
    by @MikeGon
    "My goal with this project was to make a fun and compact defuse map, with a simple level flow, ample verticality, and an overlapped layout! I wanted to have interior and exterior, and break the grid a lot, to avoid having that "90 degrees grid" feel in the layout. I needed to have a vista on one side of the map to help with orientation, so I decided to make it a coastal town, inspired by those found on the island of Skopelos, Greece. Expect more updates in the near future, as I'm not yet satisfied with it. Since this is my only CSGO map, I want to put all my time and effort into it, and focus on quality instead of quantity. Thank you everybody for your support and feedback! <3" - MikeGon
     

    Insurgency: Sandstorm - Precinct
    by @Xanthi, @Squad, @Jonny Phive, @LATTEH, @Steppenwolf and others at New World Interactive
    "Precinct, was a fun and challenging map to work on. We decided early on to melt District and Contact two of our very nostalgic maps together into a single large-scale urban environment. The goal was to preserve the nostalgic feeling and at the same time create something unique and fresh not just a 1:1 copy. In the block-out stage we started playing with different terrain heights, which eventually was the key to accomplish our goal. Terrain height was a bit of a trial and error process; I remember driving up a hill and not having enough torque, oops!!" -Xanthi
     

    Counter-Strike: Global Offensive - Killhouse
    by @FMPONE
    "Killhouse showcases brutal duels, player reaction times, and close-quarters combat. A highly vertical layout ensures the sort of unpredictability and replayability ideal for CS:GO’s 2vs.2 "Wingman" game-mode." - FMPONE
     

    Counter-Strike: Global Offensive - Station
    by @Roald and @untor
    "All experiences contribute to where I am at this point. I am just a hobbiest but I think I learned alot about level design just by doing it and enjoying it. Overal my goal is to improve myself on level design, but also enviorment art. I think I archieved a goal on level design and it's now time to continue on enviorment art. This is where untor morozov comes in. I have met untor a while ago. He made this map 'Waterfall' which was pretty populair. I liked his designs and added him as a friend. When I had this wingman map going on with positive feedback I just contacted him again to work on it with me and since this moment we have had a incredible teamwork. I am gameplay orientated and he is art orientated so we were a great couple. We just enjoyed work on this project and respected eachother and had alot of fun." - Roald
     

    The Gap
    by @Yanzl and Sara Lukanc
    "The Gap is a sci-fi thriller first person narrative exploration video game. You play as Joshua Hayes, a neuroscientist trying to figure out what happened, barely remembering anything about his past. It started as a project for our BA thesis and has now grown into a standalone game. It's also my first "real" indie game project, helping me learn a lot about Unreal Engine 4 and game development in general." - Yanzl
     

    Counter-Strike: Global Offensive - Alexandra remake
    by @Serialmapper
    "My first successful map was born 10 years ago for CS1.6. It was done in just 4 days. Since then it has been ported/improved several times on CS:S then finally on CS:GO. It always had a "dust" theme. Initially i wanted to remake it with an "inferno" style but when the new dust2 came i switched the plan to use the new assets. The map was and is frequently played on public servers especially in Eastern Europe so i had plenty of feedback to improve it. For some it's just another "dust" map, but for me it's my dust2." - Serialmapper
     

    Far Cry 5 - Wetland Turmoil
    by @grapen
    "I wanted to try working with location design in an (imaginary) open world game for the first time, so I made this backwater cabin neighborhood. At the time I also wanted to see what the limits were in Farcry Arcade and how far I could push it. The level has fixed spawns (a limitation of the editor), but I toyed with the idea of making it work regardless from which direction the player would have approached it. The pathing and player guidance is more or less shaped like the number eight, with the church acting as an outlook. Your task is to eliminate all the bad guys. In the end I wanted to do so much more, but couldn't due to technical limitations. All in all it was a fun experience to make it." - grapen
     

    Counter-Strike: Global Offensive - Trailerpark
    by @OrnateBaboon and @Skybex
    "We wanted to make a map for CSGO, using a theme that had not been seen in any previous version of Counter-Strike.The map had to incorporate everyday plausibility, provide for enough variety so that things remained visually interesting,  but also be flexible enough to allow for the use of low geometry for easy grenade strategies. Being able to immediately recognize a theme in a map is always important, so with all this criteria in mind, A trailer park fitted the bill perfectly. There is still some way to go before a full release, but 2018 was a great year for progress on this project." - OrnateBaboon
     

    Unreal Engine 4 scene
    by @Corvus
    "I was inspired by games like stalker and the last of us. The goal was to make something photoreal with a lot of foliage. It took a couple of iterations but I think I achieved the goal in the end. While making this project I've had to learn a lot about Speedtree to make all the foliage, it was a really cool experience. Right now I'm in the army so unfortunately I can't make any more scenes right now, but after I'll come back I'll try to make more scenes like that." - Corvus
     

    Overwatch - Busan
    by @Minos, @[HP], @PhilipK, @IxenonI, Phil Wang, Lucas Annunziata and others at Blizzard Entertainment
    "Busan was a challenging map to make. Due to the game having 12 different heroes on screen we have a somewhat limited memory budget for maps, that includes all models, textures, effects, collision data, lighting information, etc... Fitting three radically different areas (Downtown, Sanctuary and MEKA Base) into one single map budget required us to find new ways to optimize our work. In the end, we were even squeezing kilobytes out of collision data to make it all fit, no kidding! But the result speaks for itself, the map was fun to work on and we are very proud of what we accomplished!" - Minos
     

    Counter-Strike: Global Offensive - Highlands
    by @ElectroSheep, @El Moroes and @'RZL
    "We wanted to make a map in Scotland because, thanks to dishonored 2, we were browsing a lot of references froms this area and we really loved it. I also went myself here in holliday after that. We asked one of our close friends to make some special props, like the police van, the taxi, the phonebox and some others. Unfortunatly the hard development of Dishonored 2 put us in a difficult state where we weren't able to work on the map. So we lost motivation. Then RZL contacted us because he didn't want the project to die so we gave him the keys. And RZL became busy too ^^. Life sometime say NO I guess, hehe. Now Highlands Is my only advanced project I still didn't finished and I'm ready to give it a try, I hope." - ElectroSheep
    "Highlands...is this map is a joke? Certainly no but we can say that the development is quite longer than what we expected. Perhaps we learn well how the famous "Valve time" works? :p No seriously I think we can explain that with the motivation. Of course we were motivated to create something cool with this map but with the time and, I think, with what we live in our life we never took the time to do it correctly...I mean we never had a constant rythm on the map. This (and other personal things) led to the current statut of the map; a still "work in progress" map started in 2014. But ElectroSheep came back and his goal is to finish it, and because he's right, I'll come back too to help him. Just, be patient (again) ;)" - El Moroes
     

    Battlefield V - Fjell
    by @Puddy, @Pampers and others at DICE
    "Fjell was an explosive experiment which paired a new Battlefield dynamic, planes and infantry only, with an epic gosh darn mountain top. Tackling this design combination was like dealing with a bear after you've kicked it in the balls. It was a fun challenge and even though its extreme gameplay is quite polarizing when compared to more middle-of-the-road maps, I am happy that we went there!" - Puddy
     

    Counter-Strike: Global Offensive - Iris
    by @BubkeZ and @Oliver
    "Iris was born out of a shared interest in the TV-show "Seinfeld", funnily enough. One day BubkeZ noticed I had changed my Steam profile picture to a photo of "George Costanza" and just like that the wheels were in motion! In the beginning, BubkeZ had the vision of an old city environment with lots of dirty alleyways and brick architecture. We didn't want to fall in the trap of making the map look too bleak, so we came up with the idea of making a mid-century town set in autumn. While the map certainly have visual elements from the 50's, I would say the overall theme of Iris is american auto-industry. Making the old cars was definitely my favorite part of making this map!" - Oliver
     

    Unreal Engine 4 scene
    by @Brightness
    "I have always been a fan of retro and vintage, so this was like a dream to me. After watching the first season of True Detective, I immediately fell in love with the office set and the way the series was shot. I have definitely learned a lot from this project, mostly lighting techniques that can fill your scene with a story. The goal was to recreate their environment in my own style, and I'm pretty satisfied with how it turned out. I definitely wasn't expecting this much of positive feedback and I'm really thankful for this community. I want to do something with the environments, not just as a portfolio piece, but make a short film or make a small adventure game out of them." - Brightness
     

    Counter-Strike: Global Offensive - Insertion 2
    by @Oskmos
    "Being the follow up to the first Insertion it will have the same overall concept with the spawning and open-world like layout. However this time it will be a more urban setting and overall higher quality art assets. I always love to make environments that feels real. And that are familiar. Its all made up. But the details and various elements in Insertion 2 is from my childhood basically. Friends that grew up in the same place I have recognizes it aswell." - Oskmos
     
    _______________________________________________________________________________________________________________________________________________
    _______________________________________________________________________________________________________________________________________________
     
    The Door Challenge

    Submission thread
     
    Articles

    Designing Highly Replayable Stealth Levels for Payday 2

    Level Design in Max Payne: Roscoe Street Station

    Effect and Cause - Titanfall 2 Level Breakdown

    2017: Mapcore's Year in Review
     

    Hurg smiles upon you all!
  5. Like
    esspho reacted to Radu for an article, 2017: Mapcore's Year in Review   
    (New logo by Yanzl)
    I'm sure that by now most of us have our sleeves rolled up and are ready to tackle yet another year, but before we move forward let's take a moment to look back at what 2017 meant for our community. It was a time of immense growth for both professionals and amateurs alike. A time when everyone seemed to have surpassed their former selves. And without slowing down, some have even managed to land their first job in the industry. I don't know what this new year holds, what challenges to overcome will arise, but I know for certain that I'm excited to see everyone become even greater!
     
    2017: Mapcore's Year in Review
     

    Overwatch - Oasis
    by Phillip K, Bram Eulaers, Helder Pinto and others
     

    Dishonored 2: Death of the Outsider - Curator level
    by electrosheep, kikette and others
     

    Payday 2 - Brooklyn Bank level
    by General Vivi
     

    Sniper Elite 4 - Regilino Viaduct
    by Beck Shaw and others
     

    Counter-Strike: Global Offensive - Offtime
    by Squad
     

    Team Fortress 2 - Shoreleave
    Art pass, props and sound by Freyja
     

    Wolfenstein II: The New Colossus - Farmhouse
    Modeled, textured and composed by BJA
     

    Half-Life 2: Downfall
    by marnamai
     

    Counter-Strike: Global Offensive - Studio
    by ZelZStorm, TanookiSuit3 and Hollandje
     

    Portal 2 - Refraction
    by Stract
     

    Counter Strike: Global Offensive - Breach
    by Yanzl and Puddy
     

    Counter-Strike: Global Offensive - Berth
    by grapen
     

    Counter-Strike: Global Offensive - Kaizen
    by Andre Valera and Jakuza
     

    Counter-Strike: Global Offensive - Asylum
    by Libertines
     

    Half-Life 2: Episode 2 - FusionVille: The Shadow over Ravensmouth
    by Klems
     

    Unreal Engine 4 scene
    by Dario Pinto
     

    Counter-Strike: Global Offensive - Grind
    by The Horse Strangler, `RZL and MaanMan
     

    Counter-Strike: Global Offensive - Aurelia remake
    by Serialmapper
     

    Counter-Strike: Global Offensive - Tangerine
    by Harry Poster
     

    Counter-Strike: Global Offensive - Abbey
    by Lizard and TheWhaleMan
     

    Counter-Strike: Global Offensive - Apollo
    by Vaya, CrTech, Vorontsov, JSadones
     

    Counter-Strike: Global Offensive - Sirius
    by El Exodus
     

    Unreal Engine 4 scene
    by Corvus
     

    Counter-Strike: Global Offensive - Subzero
    by FMPONE
     

    Counter-Strike: Global Offensive - Biome
    by jd40
  6. Like
    esspho reacted to will2k for an article, Optimizing An Open Map in Source Engine   
    An open map?
    Source engine, which is funnily a Quake engine on steroids (a bit of exaggeration but still), inherited the same limitations of its parents in terms of visibility calculations: BSP and PVS. This fact makes Source, as was Quake engine before, more suitable to rooms and hallways separated by portals where the BSP shines in all its glory.
    Inheritably, Source does not like large open maps where the PVS is of considerable size and the over-rendering is a real issue.
    If you work with Source engine, then you already know the importance of optimization in a large, detailed map. Optimization becomes even more imperative when the said map is open.
    What’s an open map? Good question. The word “open” is an umbrella term to denote any map that does not have traditional hallways and corridors that connect indoors to outdoors. The map is mostly large, outdoors with an unbroken skyline; in other words, the same stuff that source engine nightmares are made of in terms of PVS and BSP.
    In a traditional “hallway’d” map with twisted corridors leading to open areas followed by other hallways, and even if you “forgot” to place hints and areaportals, the geometry itself allows the engine to cut visleaves and limit visibility; granted the visleaves’ cuts will be subpar and messy and the PVS will be in excess, but still, the visibility and fps will be relatively under control. A twisted hallway is a remedy to long sight lines after all.
    In an open map, and without hallways and enough geometry to help the engine, the PVS risks to be huge and the whole map could be rendered at once from any point (over-rendering). We are talking here about a severe fps killer and a potential slideshow on a medium to low range computer. Source does not like over-rendering; I repeat, Source does not like over-rendering.
    I believe a screenshot should be welcome at this stage to illustrate an open map. I’ve chosen a nice medium-size map from CSGO to showcase the issue: de_stmarc.

    The shot is taken in Hammer obviously, and you can immediately see that the skybox is one big unbroken body from one edge of the map to the opposite one. This is the classic definition of open map.
    Let’s see this map in 2D view from the side.

    I have highlighted the skybox in blue so you could see the continuous sky body all over the map. Please note that an open map can have varying skybox shapes but I’ve chosen the simple and classic one to showcase my point where it is easier to see and visualize the concept of open map.
    In contrast, a “traditional” map will have several skyboxes, often not connected directly but rather through a system of indoor rooms or hallways, varying in size and shape.
    I will have my map de_forlorn as example here.

    I have also highlighted the skybox in blue and you can easily notice several skyboxes for CT spawn, T spawn, and Mid/bombsites. These skyboxes are not directly connected to each other but the areas related to them are linked on the lower levels through various indoor locations, some vast (like garage, tunnels…) and some small (like lab hallway…).
    If you are not that comfortable with source optimization or feel that certain terms are alien to you, then please read my previous optimization papers and articles before proceeding further in this article (Previous papers can be found here Source Engine Optimization roadmap).
    The necessary tools
    I’m not revealing a secret when I tell you that the same tools used to optimize any map in Source are exactly the same ones used for optimizing an open map. If you were expecting some magical additional tools, I’m sorry to bust your bubble.
    Since the tools are the same (nodraw, func_detail, props, hints, areaportals, occluders…), it is more about how to use them in open maps that makes all the difference.
    So, how to properly optimize an open map? Well, you could always pay me to do so for you (joking…not…maybe…I dunno!!)
    If the above option is off the table, then read on the rest of this article .
    Horizontal hints
    While in a traditional map one might get away without using horizontal hints, it is virtually impossible to skip them (pun intended) in an open map unless you want to witness single digit fps burning your eyes on the screen. They are of utmost importance to negate the "tall visleaves across the map" issue.
    In a traditional map, even if you bypass adding horizontal hints, the damage in fps will mostly be local since the skyboxes are not connected and areas are mostly autonomous in terms of PVS. In case of my map “Forlorn” and referring to the 2D diagram above, if I remove horizontal hints from CT spawn, then only this area will suffer from tall visleaves and over-rendering. Obviously, this is not cool in terms of optimization, but at least the effect will be somehow restricted to this area only.
    In the case of “Stmarc”, you can certainly see that not including horizontal hints will have tall visleaves seen from across the map as the skybox is one unit. The PVS will grow exponentially and the over-rendering will take its toll on the engine.
    Let’s move on to some screenshots and diagrams, shall we.

    This is our glorious open map in side view. The blue lines denote the skybox, the dark grey one is the ground, and the green rectangles represent solid regular world brushes such as building bases for example. The red starfish little-man-with-arms-wide-open is the player. The orange hollow rectangles denote the various visleaves that the engine would probably create in the map (most go from ground level to skybox level and this is what I refer to as “tall visleaf”).
    If you know your optimization, then you certainly remember that BSP relies on “visibility from a region” approach (for a refresher, please consult my papers Demystifying Source Engine Visleaves and Source Engine PVS - A Closer Look. This simply translates to the following: the player is in visleaf A and visleaf A has direct line of sight to visleaves B, C, D, E, F, and G. The PVS for A in this case would be stored as BCDEFG. Once the engine recognizes that the player is in A, and regardless of the exact position in A, it will proceed to render the whole PVS content. Everything in visleaves BCDEFG will be rendered even though the player is at the extreme end of A and has no line of sight to most of this content.
    You can immediately notice the extent of damage you will inflict on your open map if you neglect adding horizontal hints: excess PVS with additional useless content to be rendered at all times.
    Now that we established the importance of these horizontal hints in open maps, the question remains: where shall I put these hints?
    In the diagram above, the most logical places would be on top of the 3 green rectangles.

    We added 3 horizontal hints (H1, H2, H3) on top of the 3 regular brushes in our map (the hint face neatly resting on the top of the regular brush while other faces are textured with “skip”). This will create more visleaves as can be clearly seen in the above diagram, and vvis will take more time to calculate visibility due to the increased number of leaves and portals but this is done for the greater good of humanity your map’s fps.
    Now the player is in visleaf A1 and the PVS is reduced to (sit tight in your chair) A2, A3, A4, B1, B2, C3, C4, D1, E4, F3. On top of the nice result of a greatly reduced PVS (and therefore content to render), keep in mind that leaves A4, B2, C4, D1, E4, and F3 are mostly empty since they are way up touching the skybox.
    Some folks will start complaining and whining: what the hell dude, I don’t have 3 green rectangles in my map; where would I put my hints?? My answer would be: deal with it!!
    Joking aside, open maps will greatly differ in size, shape, geometry, and layout. What you need to do is choose 1 to 5 common height locations in your map where you would implement these hints. Medium maps with mostly uniform building heights can get away with 1 horizontal hint, while complex, large maps with various building heights can do with 4-5 hints.
    If your map has a hill made of displacements that separates 2 parts of the map, then it is also a candidate for horizontal hints. You just need to insert a nodraw regular world brush inside the displacement to be used as support for the horizontal hint (the same technique can be used if you have a big non-enterable hollow building made mostly of func_detail/props/displacements).
    Vertical/corner hints
    These might not come into play as much as their horizontal siblings, however they could see a growing potential use depending on the map’s layout, geometry tightness versus openness.
    I cannot go through all combinations of open maps obviously to show you how to lay vertical and corner hints; what I will do is choose one diagram representing a typical open map scenario with some scattered houses, streets, and surrounding fields. Once you see how I proceed with these hints, it will become a lot easier for you to implement them in your own map regardless of the differing geometry and layout.

    Here’s our typical map viewed from top with grey lines being map borders, green rectangles being houses (solid world brushes), and our tiny red player at the rightmost part of the map. The map has a main street that goes in the middle between houses but the player is not restricted to this path only.
    The diagram below shows how I would proceed with my hints for such setup.

    This is basically what you get when you give a 5-year-old some crayons.
    Seriously though, I just gave each hint a different color so you could discern them on the spot, otherwise it would be hard to tell where each one starts and ends.
    Most of these hints go from one side of the map to the other while going from ground level to skybox top; don’t be afraid of having big hints that cross your entire map.
    Notice that we have both straight vertical hints (shown from above in the diagram obviously) and corner hints; what I did is that I compartmentalized the map so wherever the player is, chances are they will have the least amount of leaves to render in the PVS (this is just a basic hint system and more fine tuning and additions could be done but you get the gist of it).
    To get more details on hint placement, please refer to my paper Hints about Hints - Practical guide on hint brushes placement
    Areaportals
    If your map has enterable buildings, then it is imperative to separate indoors from outdoors using areaportals; this is top priority.
    Make sure to slap an areaportal on each door, doorway, cellar door, window, roof opening, chimney, etc. that leads inside the house in question.
    What about outdoor areaportals? Good call. In an open map without much regular world brushes to maneuver, it could get very tricky to set up an outdoor areaportal system to separate areas. However, you should always strive to have one, even if it is one or two areaportals across the map. The reason is very simple: the view frustum culling effect, which, coupled with hints, will yield the best results in cutting visibility around the map.
    Continuing with our previous diagram, a simple outdoor areaportal system setup could be as follows (top view).

    This setup will make sure that the map is split into 4 areas and whenever you are in one of them as player, the view frustum culling effect will kick in to cull as much detail as possible from the other areas.
    Let me show you the setup from a side view to make it easier to visualize.

    This is the same areaportal that was closest to the player in the top down view diagram but this time viewed from the side. Unlike hints where it’s fine to have one big hint going across the map, for areaportals, it is best to have several smaller ones that tightly follow the contour of the geometry eventually forming one big areaportal system.
    Another possibility for outdoor areaportal system is to have a combination of vertical and horizontal (yes horizontal) areaportals.
    If your map is a village for example with a highly detailed central square where most of the action takes place, a potential system could be made of several vertical areaportals that sit in every entrance to the square from adjacent streets, and a horizontal areaportal that “seals” the area and works as a “roof”.
    For a practical guide on areaportals placement, please check out my article Practical guide on areaportals placement
    Props fade distance
    This is a really, really important tool when optimizing large open maps. In case you got distracted while I was making the announcement, I’ll go again: props fading is definitely vital when tackling open maps optimization.
    What you need to do is to set an aggressive fade distance for all trivial props that do not contribute to gameplay. Players will look closely at how detailed your map is when they check it out solo on the first run; however, when the action starts and the round is underway, adrenaline, focus, and tunnel vision kick in, and all the details become a blur.
    During an intense firefight, players will not notice small props and details up close, let alone at a distance. We need to use this to our advantage to fade props thus releasing engine overhead; a faded prop is not rendered anymore and engine resources will be freed and allocated elsewhere.
    Your map geometry will dictate the proper fade distances, but as a rough guideline, small props could have a fade distance anywhere from 800 to 1200 units (flower pot on a window sill, small bucket at the back door, a bottle on the sidewalk…), while medium props could do with 1400-1800 range (a shrub, a power box on the wall, an antenna on the roof, wood plank, gutter pipe, fire hydrant…).
    Be very careful though not to prematurely fade critical props used for cover or game tactics (car in the middle of the street, sandbags, stack of crates, dumpster on the sidewalk…).
    Cheap assets
    Many people forget about this technique which is more than needed when it comes to open maps that tend to have larger average PVS than traditional maps.
    I showcased in a previous article of mine the fps cost of cheap and expensive assets (Source FPS Cost of Cheap and Expensive Assets).
    Get in the habit of using the low-poly model version as well as the cheap texture version in the distant non-playable areas and the high unreachable areas where players won’t have much of close contact with the environment. Potential candidates could include a distant field, the unreachable opposite bank of a river, a garden behind hedges/walls, high rooftops, the 3D sky…).
    Fog/Far-z clip plane
    This technique, when correctly used, can provide a big boost to your frame rate as parts of the world beyond the opaque fog won’t be rendered at all.
    For this technique to work properly, your map should have a foggy/rainy/stormy/dusty/hazy/night setting (use as applicable) where a fully opaque fog won’t appear out of place. Obviously, if your map takes place in a sunny and clear day, this technique won’t work much and it will look inappropriate.
    Using this is simple: For example, if your map is set in a rainy and foggy day, you just need to set the fog end distance while having its density set to 1. You will then set the far-z clip plane to something slightly higher than the maximum fog distance (if the fog end distance is 8000 units for example, the far-z could be set to 8200).
    3D skybox
    This is another good technique to reduce engine overhead and the cost of rendering.  
    It is true that the 3D sky is used to expand the limits of your level and decorate its surrounding, however, since it is built at 1/16 scale (and expanded in-game), it is also a nice way to decrease rendering costs. Use this to your own advantage and relocate assets in the non-playable areas with limited player interaction to the 3D sky.
    One thing to keep in mind though, the 3D sky’s visleaf is rendered at all times on top of the PVS in the playable area. Do not go overboard and make an extra complex, highly expensive 3D sky or you would be defeating the purpose of this optimization technique.
    Occluders
    You thought I forgot about occluders? Not a chance as these are the big guns when it comes to large open maps with little world brushes to use for other optimization techniques.
    Let’s clear one thing first; if your map is made mostly of brushwork and displacements with little to no props, then there is absolutely no need to resort to occluders as they’d be totally useless in this case. Only when the map is loaded with models and props in an open setup with little regular world brushes that occluders come to play in force.
    To place occluders, you would search for areas where these occluders could make the most impact (low fps, high traffic, props abundance) since they run in real time and are expensive, otherwise their cost would outweigh their benefit in terms of frame rate variation.
    Remember that occluders rely on the player’s position and field of view relative to the occluder to calculate what gets culled. You need to place them in a way to maximize the number of props to be culled behind them when the player stands in front of these occluders.
    Let’s see some examples.

    We go back to our famous top down diagram; the occluder is dark blue placed on the left wall of the large house while the little black stars represent various props and models. The 2 diagonal black lines denote the player’s FOV relative to the occluder. Anything behind the occluder and within the view frustum will be culled.
    That’s nice; we are able to cull 4 props but is it enough? It is not optimal as we can still do better. What if we move the occluder to the right wall of the house?

    Much better if you ask me. 5 additional props were added to the culling process meaning less overhead and fewer resources to render for the engine. That is why I said earlier it is all about maximizing the impact of the occluder by placing it in a way relative to the player’s position that maximizes the number of culled models.
    Here’s another example (still top down view).

    The player has moved to the middle of the central street, and beyond that L-shaped house is an open field with a lot of props scattered around. One way to implement occluders is as showcased in the above diagram. Notice how I arranged 2 perpendicular occluders along the walls for the maximum occlusion effect as all of these props in the field are not rendered from that player location.
    Another way to arrange occluders in this case would be diagonally across the L-shaped house (split into 2 or 3 occluders if needed to accommodate the nearby geometry; they can be floating without the need to seal an area).
    If you’re feeling brave enough (you should be after reaching this far in this article), you could also add an extra occluder along the wall of the house to the left of the L-shaped house to further enhance the view frustum occlusion effect and cover more props in the field.
    The most common places to add occluders in open maps include a displacement hill that separates parts of the map, a hedge that stands between a street and a field full of props, a floating wall between a house garden and the street, the walls of a large house, the walls of a tall building, a ceiling when it separates multiple levels…
    To read more about occluders placement and cost, please consult my article Practical guide on occluders placement
    In conclusion
    The foundation of optimization in Source engine will be the same whether it is a traditional map or an open one. You will heavily rely on func_detail, nodraw, displacement, props… to achieve your goals but it is the way you use these tools in an open map that makes all the difference.
    One might get away with being a bit sloppy with optimization in a traditional map, however, make no mistake that an open map won’t be any forgiving if you decide to skip a beat in your optimization system.
    Talking about different open maps and formulating varying optimization systems for them could fill articles; I hope this article has shed enough light on the open maps optimization approach to let you easily design a system for your own map.
  7. Like
    esspho reacted to Alf-Life for an article, Creative Airlocking: streaming in action games   
    Creative Airlocking: streaming in action games
    This article will discuss the loading and unloading of areas in linear single-player action titles, and look at contemporary examples of how the best games mask these so they appear seamless.
    Background
    When designing levels, Level Designers and Environment Artists must consider that their assets all have to fit within memory at once. While older action games like Wolfenstein 3-D and Doom would load the entire level with a Loading Screen at the start of each map, games like Half-Life started a trend of loading smaller sections gradually so they could squeeze in more detail and also provide a more seamless experience for players, making the game feel like one long adventure.
    At the time, going from one space to the next in Half-Life resulted in a seconds-long hitch with the word “Loading” on screen. There was no warning that it was going to happen, although Valve’s Level Designers oftenplaced these level transitions in smart places; usually down-time between combat and in a natural chokepoint. In later years, with faster computers, these load times decreased and are now almost seamless.

    Half-Life displays a small loading message when transitioning between levels.
    Currently, blockbuster series like Gears of War and Uncharted provide truly seamless transitions. After one long initial load for a new chapter with a completely new location (with new art) – sometimes masked behind a pre-rendered movie – “buffer” Streaming Sections are used, in which the previous area is unloaded, and the next loaded, on the fly. Since a lot of the globally-used entities are already loaded, and the environment is usually the same, assets can be shared, which can reduce these transition load times to much less than the initial level load.
    Essentially, these games take the smaller loading bar/screen of a more continuously-laid-out game like Half-Life, Portal 2 or Fallout 4 and make the player spend that time in the game world. If done creatively, players won’t even notice it. They might even enjoy the down-time if it’s well-paced, like The Last of Us where it can be spent on a thought-provoking puzzle or with the characters discussing something interesting.
    Overview
    Most action games budget out large areas, and then connect those with these smaller Streaming Sections.
     

    Section (A) is a huge space with lots of combat, Section (C) is another. Players in Streaming Section (B) can’t see into both (A) and (C) at once. Section (B) is where Section (A) is dropped from memory and (C) starts to load in. Section (A) being dropped shouldn’t happen in view of the player, and unless the game supports backtracking it is wise to place a back-gate to stop players returning, for maximum efficiency. As soon as Section (A) has been dropped, Section (C) can start loading in. It must have been loaded by the time the player exits Section (B), so it is also wise to front-gate players in case they rush through.
    The best way to think of a Streaming Section is as an airlock; the “door” behind the player is locked, the next area is loaded, and the “door” ahead opens. Ideally, these sections aren’t literal airlocks but instead nicely-disguised puzzles or narrative spaces between the action.
    Back-gating, and Unloading
    Back-gating, as the term suggests, is when the player is prevented from returning to a previous area. The ‘gate’ behind them is closed, in a lot of cases locked. This doesn’t have to be a literal gate or door, though. A ceiling can collapse causing debris to block the path behind the player, the player can fall through the floor and not be able to climb back up, they can pass through a one-way portal and not get back.
    Back-gating after entering the Streaming Section is usually done around a corner where the player can’t see Section (A) being unloaded.
    One-way animations are the main manifestation of these in modern action titles. Think of how many doorways your player character has held open, only to have it collapse behind them. The level section behind that door is now being unloaded, to make space in memory for the next large section. In co-op games, these animated interactions are a great way to bring players back together so that Player 2 isn’t left behind, only to fall through the world, in the section that is just about to be unloaded!

    The Last of Us has a huge variety of bespoke, painstakingly-animated back-gates.
    A cut-scene can also serve as a good back-gate, as long as it makes sense in the context and/or story so as to not feel tacked on, and is within development budget!
    One-way drop-downs are also a great and less flow-breaking back-gate. If the L-shaped area just before the drop-down can be kept in memory, as soon as the player drops down a ledge they can never climb back up, the previous area can be unloaded. The only down-sides to this softer back-gate are that they can feel contrived unless the game’s art and world can support it (terrain and collapsed structures are great for this), and that co-op players may have to be teleported to the dropping player so that they don’t fall through the world when Section (A) is unloaded.
    Slowing the player down, and Loading
    As Streaming Sections are usually connectors between two larger areas, they naturally make for slower-paced breaks in the action. Since Section (C) is being loaded in, slowing the player down in (B) – either literally as with Gears of War’s infamous forced walks or cerebrally with light puzzle gameplay – can be more efficient and interesting than just making a large footprint which has to cater for a player, say, sprinting for 30 seconds.

    Even when rushed, this plank puzzle in The Last of Us takes time and offers a nice respite.
    “Popcorn” encounters with just 1-2 enemies can be a good trick to allow loading to finish and slow players down and prevent them from simply rushing through a short Streaming Section. They also keep players on their toes and vary the flow from, for example, combat to puzzle to combat.
    Interactive Objects such as the slow-turning valves in Killzone 2 and the Gears of War games can also buy some loading time, as can environmental obstacles such as jumps or mantles or animations where the player’s buddy looks around for, and then finds, a ladder to kick down for the player to climb (also a good front-gate).

    Interactions like the valve in Gears of War slows players down and can also act as a front-gate.
    These approaches can also be combined in ways that fit the feel of the game, such as a Grub locking the player in a room and flooding it with frightening enemies in the first Gears of War game.
    Batman Arkham Asylum does a great job with additional ‘softer’ methods of slowing players down by playing a captivating well-acted taunt on a monitor from The Joker, or by encouraging exploration with The Riddler’s location-specific riddles or any number of collectibles.
    Front-gating, and Loaded
    As with Back-gates, front-gates are quite self-explanatory – the exit to the area the player is currently in is locked until certain conditions, such as all the enemies in the room being dead or the next area having loaded in, are met. Again, this doesn’t have to be a literal gate or door, just an obstacle in the world that can change its state from closed and locked to open.
    A lot of games from the Call of Duty series to Killzone 2 to The Last of Us extensively use friendly characters to unblock a front-gate; chain-link fences are cut through, doors are kicked open, wooden beams are lifted. New waves of enemies can also open a front-gate for the player and offer the bonus in that noisy, gun-firing AI attract players, like carrots on a stick, to the newly-opened exit. Many action games have excellent examples of enemies blow-torching open a door to get in or a huge monster bursting in through a wall; not only are these cool enemy entrances, but oftentimes their new unorthodox entrance-ways become cool exits, sign-posted by their un-gating event.

    Previously-locked doors in Halo often flash and make noise when opened by new enemies.
    Not all games front-gate the exits of their Streaming Sections because the time needed to load a Section (C) can usually be accurately gauged, and the acceptable fallback is a slight hitch. However, front-gates do provide that extra failsafe to ensure the next area is loaded before leaving a Streaming Section – in this case, a player with a scratched disk or corrupted file could see out of the world, at best, or get stuck or fall out of the world, at worst (though it could be argued someone with a scratch or corrupted files might see worse issues regardless).
    The biggest issue here is that front-gates need to fit the game or the level art – neat doorways or bottlenecks aren’t always possible. The other big issue is repetition; if a specific door interaction animation is always used, the game needs to provide a lot of variety in that animation!
    One trick that can be used to alleviate repetition, however, is if the front-gate is out of sight near the end of the Streaming Section (A). A check can be done to see if Section (C) has loaded, and if it has, the door can potentially be pre-opened saving the player another potentially-repetitive interaction but also holding as a true front-gate if a player does rush through.
    Batman Arkham Asylum had an interesting front-gate in the penitentiary sections; a security camera scanned Batman once before opening the door. Given the backtracking-heavy structure of the game, when racing through at full pelt, if the next area had not finished loading, the camera would loop the camera’s scanning animation. This is a great compromise because the camera scan completely fits the fiction of the world, and an extra scan animation would probably go unnoticed by many players.

    Batman Arkham Asylum’s Penitentiary’s doors only open when loading is complete.
    Conclusion
    In most linear action games, keeping the player immersed in the world is preferable to seeing a loading screen. If developers can create interesting activities, take advantage of slower pacing through narrative, or just make smart use of assets and an interesting space to traverse, Streaming Sections can be part of the world and not feel like generic winding corridors that stand out even to uninitiated players as padding.
    Copyright © Martin 'Alf-Life' Badowsky 2016
  8. Like
    esspho reacted to will2k for an article, Displacement Vs. Func_detail - A comparative fps study   
    What is the question?
    Ever since the dawn of humanity, this question was the center of a colossal debate. Greek and Roman philosophers tried to solve it to no avail. Alchemists in the Middle Ages gave it a go and failed miserably. Even Industrial Age scientists touched on the subject with no big breakthrough.
    Luckily for everyone, I am here today to answer this question and put an end to a centuries-long argument: What is better in terms of fps, func_detail or displacement, in the context of the Source engine? If you were expecting an existential question, I am deeply sorry to disappoint you but hey, life is full of disappointment.
    The study
    This is going to be a short but sweet article; fewer words, more numbers and screenshots. The study is pretty straightforward and systematic. To make things fair and square, I will create 2 exactly identical test maps: In one, everything will be turned to func_detail while the other will have everything switched to displacements. I will then proceed to record the localized fps in these maps from a preset location and compare. Pretty simple, isn’t it? Well, it should be as the whole purpose of this study is to compare func_detail vs. displacement in absolute terms while keeping all other parameters constant.
    The cases
    The first map to test is the one made of displacements. Here is the screenshot showcasing the fps.

    The map itself is very simple consisting of 7 identical houses placed at predetermined locations and surrounded by 4 walls. The houses are detailed enough to put some slight pressure on the rendering engine. For the skeptics among you, here is a wireframe in-game shot to show that everything is made of displacements.

    To refresh your memories, in Source engine wireframe mode, green is displacements, pink is brushes (world, func_detail, brush entity, etc…), blue is props, and yellow is decals/overlays. The recorded fps in this map is 289. We now move to the second map, the func_detail version to check how the frame rate is faring. Here is the awaited screenshot.

    Surprise, surprise. The fps is 330, much higher than the displacement version. Here’s the wireframe shot to put your mind at ease.

    Honestly, I was thinking the figures would be more on par as the engine handles both details and displacements pretty well, but in the end, Source is about BSP so I guess brushes would get a slightly preferential treatment over polygon meshes (conspiracy theory ensues).
    The question that forces itself now is: Should we rely solely on func_detail in our maps? Of course not. Both func_detail and displacement have their advantages and inconveniences and leaning exclusively on one will inevitably lead you to a dead end. The best thing to do is get the best of both worlds by using them together.
    In our little test map, how about we mix things up in a third version: let us make the house walls out of displacements while having the doors, windows, frames, and roofs made of func_detail. Incoming screenshot, brace yourselves.

    Much better, isn’t it? We have now 311 fps, a very nice middle ground between the 330 fps of func_detail and the not-so-bad 289 fps of displacements. The mandatory wireframe shot follows.

    So, what can we learn from all this? Well, apart from the obvious places where displacements are mandatory for the organic mesh sculpting (rock formations, cliffs, bumpy/twisted roads…), it is a good idea to spread some more displacements around your map to alleviate the total brush-count that you will inevitably hit the maximum in a highly detailed map. Your fps will remain high and you will enjoy the margin to keep adding structures to your map without fear of reaching the maximum allowed total brushes (substituting brushes with models/props is another viable solution that is not in the scope of this article).
    I’m a man of science and I know that one example is not enough to draw conclusions. That’s fine, I have a second test map to investigate what we established before. The concept of having 2 identical maps is still the same, however, this time, we will spice things up by adding some static/physics props and some decals here and there. We will start with the displacement version.

    230 fps, not too shabby. Let’s check another angle.

    220 fps, more or less, on the same level as the previous number. Now for the wireframe shot.

    The tree cards in the background are func_brush in both maps (the detail and displacement versions), so it’s a level playing field in this case.
    Now for the moment of truth you all have been waiting for: will the detail version have better fps to support my earlier findings or will I be publicly embarrassing myself? A screenshot to the rescue.

    I knew I was right, never breaking a sweat (apart from the nervous cold sweat I just wiped off my forehead). 255 fps for the first location A. Let’s check the other angle or location B.

    250 fps. Bam, sweet victory…sorry I got carried away a bit. Ahem…Let’s get back to being scientific, shall we. Here’s the wireframe proof.

    Let’s recap all the action and numbers in a nicely formatted table.

    You can notice the fps gap between the func_detail and displacement versions in both test maps whereas the “mixed” version considerably narrowed this gap. The numbers have spoken.
    The bottom line
    The bottom line is, if you rely only on func_detail, you will hit the maximum brush-count allowed in Source and severely limit your map and creativity. You might also run into T-junction issues as well as parts of your geometry flickering and disappearing from certain angles in densely func_detail’ed areas.
    On the other side, if you stick to displacements alone, then you will have lower fps than a func_detail map version. You might also run into visible seams and un-sewn displacement issues.
    Having a clever distribution of both func_detail and displacement in your map is the way to go. You will have high fps, better lighting around the edges, and organic sculpting while not getting anywhere near the total brush limit; the best of both worlds.
     
  9. Like
    esspho reacted to Rick_D for an article, Making Agency, the popular CS:GO map   
    What is Agency?
    Just in case you have never heard of Counter Strike: Global Offensive, it's a hugely popular online FPS, successor to Counter Strike: Source and the original Counter Strike. The original came out in 1999 and the core gameplay has remained almost unchanged. Players are split into two teams and challenge each other in various game modes such as Bomb Defusal (one team has to plant and detonate the bomb while the other tries to stop them) and Hostage Rescue (one team must rescue the hostages whilst the other attempts to prevent that). The Bomb Defusal mode is by far the most popular, with maps designed with such detail that players can predict down to the second when another player is due to arrive in a certain area of the level. It's also the only mode played in competitive events and for huge prize money.
    This leaves the poor Hostage Rescue mode sitting on the sidelines twiddling it's thumbs and feeling a little rejected. In part this is because the Hostage Rescue mode is far more of a roleplaying experience, often with very poor odds of success for the team tasked with doing the rescuing. Often the levels are designed in such a way that the defending team has a large positional advantage, where simply staying-put will give them a good chance of winning.
    That's where we can start talking about Agency. Agency is a Hostage Rescue level, created as a collaboration between level designer Patrick Murphy, and myself doing the art. The basic idea being that Hostage Rescue could be just as precise and exciting as Bomb Defusal. It's been included in three official releases from the games creator, Valve, as part of their community level packs: Operation Bravo, Operation Phoenix and Operation Bloodhound. Phoenix being a community-voted choice, which was especially great to see that players enjoyed the style of gameplay and visuals that Agency brought with it.
    In this article I will go over the process of creating the art, from props to set dressing, texture creation and lighting, while maintaining a visually pleasing aesthetic and serving to enhance the gameplay. This isn't a postmortem but rather a walk-through of the various stages, hopefully to give some ideas to others, with lessons learned both positive and negative.

    Iteration from Whitebox to Final
    Starting out you should always have an idea of what you're going to create, even if it is quite vague, as it'll point you in the right direction for both creating architectural spaces and letting your imagination fill in the blanks as you build the basic shapes of the level. We knew we were going to build an office space, but style was leaning towards an older government building with red bricks and musty wood. As I started to put in some basic textures we decided it felt too bland, and similar to other levels in the game. In order to stand out and create something really interesting and intriguing that would entice players to want to explore the level we decided to modernize the space and use white as the primary colour - this would help players see each other more easily and provide a striking visual setting it apart from other levels.
    "Modern Office" is not exactly a style that has a single look, if you search for images you'll get back a lot of contrasting designs and ideas, trying to put every single one of those into a level would create a visual mess with no consistency. It's important to choose the right references for what you are building, something that looks cool in a single image or from a specific location might not fit into the theme of the level, and in a worst-case-scenario it might actually start to detract from the level as a whole. Trying to cram in as much content as possible simply makes your level feel less unified and jarring.
    Unfortunately when you are presented with so many fantastic designs and ideas it can be hard to pick out what is important. After settling on the location: a modern advertising agency's office, I broke down the needs of the level into a few different categories:
    Area Specific General Use Overall Theme The Area Specific content is "hero assets" for each location in the level. These are the things that help the player tell different areas apart from each other, a reception desk, a kitchen, a bathroom, etc. Assets that won't be used anywhere else except in their specific location.
     

    Examples of Area Specific Content

    The General Use content is the backbone of the building, it's wall sockets, ventilation tubes, sprinklers, desks and chairs. The things that could be used anywhere and would blend in to the background and not stand out unless you were specifically looking for them.
     

    Examples of General Use Content

    The Overall Theme content is what sells the theme of the level to players, advertising boards, company logos, large art installations and so on. These can be used everywhere but sparingly and should only be used as a subtle reminder to the player of where they are thematically. They shouldn't detract from the Area Specific content but should stand out more than the General Use content. This came in the form of abstract paintings, corporate logos, rotating advertisement panels and so on - things that would subtly tie the level together.
    Once these categories were laid out, searching through reference images became much simpler as you know what you need and only have to find an interesting design or detail that enhances a specific category.
    This isn't to say that everything was completely planned out or that development was flawless. Sticking to a plan only works until you open the editor, and if you try to force something you'll end up frustrated when it consistently fails to work. As an example we originally had the level set on the ground floor of a tall skyscraper. I spent a few weeks working on content for the ground but never really getting it to feel right within the theme of the level: the contrast between a dirty exterior street section and a spotless interior didn't feel right for the level, and felt a little too similar to another Counter Strike level. Patrick played around with some ideas and tried something I was afraid of: simply deleting everything I had done on the outside and adding an epic city vista. Instantly it felt right. The important thing to take away from this is that just because you have worked on something doesn't mean it's the right thing to be working on, and that getting input from other people with different ideas can vastly improve what you are working on.
     

    The first mockup of Agency's rooftop exterior
     

    The same space after an art pass

    Another incredibly important thing I realised is making use of modular assets. If you are going to duplicate something in your particular modelling software you should ask yourself: is this efficient? Chances are you're just making things harder to change later and locking yourself into a particular shape; eg: a walkway has a railing around it, you model the entire railing as a single object. Now if you need to change that walkway a month later you're going to have to go back and change your railing model. It's better to create a smaller tiling mesh that can be used multiple times, as often you'll find you can use that model in other areas and in different ways than you had initially intended. You're simply applying the concept of tiling textures to models, and in the process saving yourself a lot of time.

    A Believable Clean Art Style
    Creating a clean environment can often be more difficult and time consuming than a very dirty and cluttered one, simply because any mistakes are magnified by the lack of other objects to disguise them. A room with a single chair in the middle is going to end up with the focus being on that chair, if you fill that room with a hundred chairs you're going to be less concerned with the details of the chair and more worried about why someone would fill a room with a hundred chairs.
    In the modern office setting of Agency it would have made little sense to fill it with props and clutter, but a large empty space would just feel unfinished. A delicate balance of larger architectural shapes and smaller objects was needed. I like to think of this as functional art: it serves a purpose in the lore of the game world. Window and door frames, electrical sockets, thermostats and card swipes along with the maintenance apparatus of ventilation systems. These are the general use objects mentioned earlier, they fill out space and prevent an empty wall or ceiling from actually looking empty and at the same time they contribute to the believability of the level. It's important to think of the infrastructure of the building when placing these assets - if a wall has an air vent on it then the wall needs to be thick enough to support the ventilation pipes that feed it, Card swiping mechanisms need to be placed near doors at the correct height, electrical sockets should be placed logically in areas where they would be of use to the fictional inhabitants of the level and so on.
     

    Several examples of functional art details

    One of the most important things to do right when creating clean environments is to get the most out of the materials. It's not possible to cover every surface in dirt or decals, so the surfaces themselves become your way of showing detail.
    For Agency this was achieved by making liberal use of the phong shading techniques in the Source engine for models, and cubemaps for world textures. Almost all models in the level have some amount of phong shading, and although it doesn't produce a completely physically accurate result it can be used to create materials and surfaces that look relatively accurate. Simply by increasing or decreasing the intensity of the phong amount allowed for a vast majority of the levels surfaces to be rendered accurately. As I didn't need to have a lot of noisy detail in the materials due to the clean style I simply used a small phong texture as a mask for 75% of the models and let the lighting and general shapes of the models do the rest of the work.
     

    Simple phong shading to mimic real world materials

    As most of the surfaces had a single layer of material, ie paint or coloured metal, the phong shading could be completely even without breaking the illusion; however some of the dirtier surfaces such ventilation tubes and water pipes had several layers: a painted metal surface with area peeled away to reveal with metal underneath or a layer of dust. These had specific masks that would enhance the different materials, and showing wear and tear in the background assets added an extra layer of depth without compromising the clean style.
    Most of these textures were created with dDo, an excellent tool for quickly creating textures. I generally started with quite a dirty texture preset and toned down the details and noise until they were barely perceptible surface imperfections.
    Agency features probably close to 95% custom art, and that's a lot of work for a single person. Using dDo allowed me to make a lot of content relatively quickly, and kept it all visually consistent.
    The process of creating the assets with dDo was quite simple: first I modeled the basic ingame asset, then did a very quick and dirty placement of edge loops that allowed me to smooth the mesh and get a workable high poly. A very rough normal map was baked (along with a more solid ambient occlusion map), this rough normal map would never make it into the game, it was used purely for texturing with dDo. This rough-and-dirty technique was mostly used on the more general purpose assets that nobody would spend a lot of time looking at. For the objects that were in high traffic areas or that required finer detail a more robust normal map was created.
    Tiling textures used throughout the world were photo-sourced and tiled in Photoshop. A few examples worth pointing out are the plaster wall textures and the marble floors:
     


    The image above shows the ingame result, the diffuse texture, and the normal map of the standard plaster that is used throughout the level. The normal map was authored at 1024x1024 compared to the diffuse texture which was 512x512. I created several colour variations of the diffuse texture and for a very plain surface using a 1024x1024 diffuse didn't make much sense. The final touch was to add a subtle cubemap effect to bring out the normal map and add interesting coloured reflections in various areas.
     


    Another example is a marble floor used throughout the level. The normal map is unrealistic in that it portrays an uneven bumpy surface when in fact it is more likely to be uniformly flat. However to break up the reflections and add some visual interest to such a large and empty area I added a subtle bumpy normal map which warps the reflections, but is subtle enough that it doesn't get picked up by the lighting and actually appear like a lumpy mess.
    Good shading only gets you part of the way there, however. A poorly scaled model can break immersion instantly, especially when you are trying to create a believable real-world environment. There are tried-and-true metrics for Counter Strike so having a base to work from helped immensely, but these only give you a good starting point or a bounding box for your object. It's important to study real world reference and make sure your object is proportional to the world around it and also to itself. A unit in Hammer is an inch, so having wood that's 2 units thick, or a doorway that is 1.5m wide quickly makes things look wrong.

    Working with Designer Blockouts, and not Destroying Gameplay
    Agency was a collaboration, with Patrick doing the design work and me doing the visuals, this meant there was a lot of potential for overlap and working on the same areas, the potential for breaking things was huge.
    Often when you create things as an individual you don't have to worry about version control or stepping on someone else's toes, however when you work with other people either for pleasure or business you, as an artist, need to change your mindset. You are not creating a portfolio piece but rather something functional that has to withstand hundreds of hours of real people playing it.
    Your first role is to support the designer, and this benefits you as well. By creating the basic structures of the level: doorways, window frames, stairs, railings, cover objects etc, you are allowing them to work with the final assets and tweak gameplay according to those assets. Nothing needs to be finalized instantly, it's better to provide a rough mockup of the intended asset so the designer can play around with it and give feedback on the shape, size and silhouette. Once you are both confident it's going to work they can populate the level with these assets which saves you time in the long run, and once you finalize the model and textures they are going to be updated across the entire level without having to manually replace assets.
    It can be difficult to determine exactly when you should start an art pass, especially when a level is constantly evolving. Rather than sitting idly by whilst Patrick was ironing out the design of the level I started on the creation of a few visual test levels to explore materials, lighting and modular assets. Once the first iterations of Agency were created, with rough shapes for important cover and controlling lines-of-sight. I went in and created an art pass and altered many of these original gameplay ideas, simply experimenting with different shapes and designs for the rooms. We had a constant dialogue and never considered something finalized just because it was finished. Playtests would determine whether an idea was valid or not in a way that speculation can only hope for. The most important lesson learned during this process of constant iteration was that work is very rarely wasted, and it is far more important to stay true to a gameplay ideal than to have an area that looks interesting in a screenshot but utterly fails when players get their hands on it. A box is a box is a box, it is down to you as an artist to imagine how that box can be interpreted within the context of the environment.
     

    Initial art pass ideas for the central area (above) versus the end result (below)
     

    Initial art pass ideas for the reception (above) versus the end result (below)
     

    Initial art pass ideas for a hostage (above) versus the end result (below)

    Lighting
    An important part of any environment is the lighting. Too contrasted and moody and it becomes hard to identify players, too bright and monotone and it becomes boring and a strain on the eyes. For Agency I used a series of instanced lighting setups: a model to visualise the light source, a spot light to direct the light, and a sprite or light cone to add a visual effect around the light. Each light setup was unique to the type of model used for the actual light source, ie: all spotlights were identical, all fluorescent lights were identical etc. This meant I could change a single light and have the others update automatically, and always get an accurate result.
    Then it was just a case of placing these different types of lights where they logically made sense in the environment, and if an area was too dark an appropriate light source was added, and if an area was too bright lights could be moved around or removed entirely. This made it quite easy to light as everything was guided by reality, which has plenty of reference material, and had the side effect of helping to make the environment more believable. By using various colours on the floor and walls I could direct lights towards them and take advantage of the Source engine's excellent radiosity and spread interesting colours to nearby surfaces.
    In many areas the ceiling was opened up to reveal the sky and to let natural sunlight into the interior spaces, this was done to provide contrast to the electrical lights and to get extra radiosity bounces into the environment. Some areas had lights removed or toned down to allow other more important gameplay areas to stand out, for example the image below shows how the corridor here was darkened both by using darker textures and by using restrained lighting to make the room in the distance appear brighter as this is an area that enemy players will appear from.
     


    This could have been taken even further by possibly using emergency exit signs to add hints of colour to important gameplay areas and chokepoints. A consistent lighting language would have helped guide players during the first few times playing the level. There are some large open spaces that would have benefited from some coloured screens or lighting panels, or possibly making some of the larger glass surfaces tinted, to add a little extra colour and prevent such a monotone look whilst not being over-bearing or detracting from the realistic style of lighting I was aiming for.

    Final thoughts
    During the course of developing Agency I had a chance to learn a few things and come out the other end a, hopefully, better artist.
    So, what went well?
    The iteration process never had any hiccups, by using modular content and being prepared to discard ideas and art styles that weren't working we ended up with a better level. If we had tried to force the original idea of a ground-level government office we would have ended up with a completely different level, complete with underground parking lots and elevator shafts. Exciting stuff!
    The power of iteration cannot be understated, and understanding that a mockup or a blockout of a level is simply a temporary phase that doesn't represent the end result. Areas changed drastically between versions, sometimes due to design requirements, and sometimes of shifts in art style; but each version was better than the last, more refined and polished.
    What went less well?
    In direct contrast to the statement above, sometimes the iteration interfered with more important tasks. I got stuck on areas trying to get them to work instead of letting them sit for a while and returning to them later. I tried to force an idea for the exterior part of the level and it never felt right and consumed way too much time, when all it took was getting some outside perspective. Luckily during the process I learnt to trust designers when it comes to art, just because they might not build high poly meshes doesn't mean they aren't artistic.
    Another problem was building too much content completely unique for an area which meant when we inevitably changed things it became time consuming to shift assets around, and makes it less easy for others to re-use that content without creating an almost replica of the area it was designed for. These unique assets helped sell the realism of the level but made them harder to work with.
    Hopefully this has been interesting and insightful!
  10. Like
    esspho reacted to Sentura for an article, Exploring Unreal Engine 4 Scripting: Part One   
    On the other hand, UE4 has also been somewhat stripped of “default” content in order to emphasize the user-generated content located on Epic’s new marketplace. This tutorial series is designed to bring you up to speed on UE4 level-design by showing you how blueprints work and how you can create your very own blueprint building-blocks.

    Understanding Blueprints The Blueprint system is a visual scripting language central to all game interaction in UE4.
    Blueprints come in two flavors: Level blueprints and Class blueprints. Level blueprints are attached to your level, whereas Class blueprints are self-contained templates for a single type of object in your level (a “class”) only. Anything you do in a Level blueprint can also be done in a Class blueprint, but Level blueprints additionally enable you to set up communication between multiple Class blueprints.
    Let’s take a look at what actually goes on inside these blueprints.

    Inside Blueprints Let’s start with the two basic blueprint nodes: Functions and Variables. Variables can be explained as containers of object data, while functions essentially perform game logic upon variables.
    The next section will cover these nodes in more detail.
     
    A Player variable with a Jump function. As illustrated, executing the function (f) causes the player to jump

    Object Data (Actors and Variables)
    Although they are very versatile, variables are most commonly used to control actors, objects that exist inside the game world. Characters, weapons, doors, switches are all examples of actors. Additionally, every actor’s variables can potentially be manipulated by functions, for example the health of a character stored as an integer value.
     
    A actor variable (player) with health and position stored as an integer variable (green) and a 3D-vector variable (yellow), respectively

    Actors can also contain components: other actors incorporated inside the main actor. This enables static meshes to have component collision boxes, or to be paired with component particle effects, among other things.
     
    The components of this door object are two meshes (a door and a doorframe) and a collision box that helps control the door’s physics behavior

    Functions
    Functions are nodes of logic which can be executed (called) to perform a certain task. If something needs to take place in-game, such as a player picking up a weapon, functions can enable as well as add additional consequences to that action.
     
    A function execution string (the white line)

    Functions present and modify variable information. For example, a function which acts upon information gathered by a variable could teleport players to specific game-world coordinates. A ‘getter’ or ‘pure’ function, on the other hand, merely relays information for use elsewhere, such as reporting a player’s current coordinates in the game world.
     
    A ‘pure’ function (green). Notice that ‘pure’ functions do not have independent execution, only when linked with a regular function (blue) does this particular function have effect

    So, we’ve covered Variables and Functions. But how does the Blueprint system know how and when to react to incidents inside the game world?

    Events
    Events allow different actors to communicate with each other. For instance, an event controls when an actor collides with another actor, or what an actor should do if a collision actually occurs. More examples of an event are a door opening as a character nears it, a switch being thrown, or a barrel exploding after it has taken sufficient damage. An example of an event could even be as fundamental as a player using controls to move their character model. Customized events can be called much in the same way a function would be.
     
    Event (red) called if an actor is hit. The event triggers a function linked to taking damage. This example is intended for learning purposes, not for practical use

    Quick aside: In general, as a good practice, variables, functions and events should be named for their exact purpose. This helps both you and others read what’s going on in your blueprints. An actor named “player”, or an integer named “health” is easier to understand than one named “asdhjkashdj”!
    For more information on variables, functions and events, please refer to Epic Games’ own documentation, which provides encyclopedic knowledge about the topic.

    Case study Now that we understand the building blocks of UE4’s Blueprint system, let’s look at a practical example: the Class blueprint of a sliding door (If you want to create your own sliding door, I recommend taking a close look at Epic’s in-depth guide.
    Our door:
     

    When a player gets close to it, the door opens. When a player leaves the door’s vicinity, it closes. Let’s examine the door’s blueprinting:
     
    You can see that the door actor is composed of several components: a frame object, a door object and a triggering box



    In this image, we can clearly see the nodes used to trigger the door’s opening and closing. For example, the event OnComponentBeginOverlap triggers once a player steps into the Box component actor listed. That triggered event starts executing anything along the execution logic path, such as the Timeline function and the Set Relative Location function.
    The Timeline function changes an integer with decimals - the Driver float variable – between 0.0 and 1.0 over time, and sends execution updates every time the float changes. The float variable is called Driver in this case, because it drives the door to either open or close. The Lerp function’s Alpha parameter then uses this float value to determine the exact position of the door between being open (float value of 1.0) and closed (float value of 0.0). The Vector variables Door Closed Position and Door Open Position are end points for Alpha to blend between. This is to ensure that the door opens and closes smoothly over time rather than instantly.
    Set Relative Location then executes the data received from the Lerp at intervals put forward by the Timeline’s update execution for the door that we use. The result is a door which slides opens when players are nearby.
    Lastly, our OnEndComponentOverlap event triggers the closing of the door by reversing its operation when players leave the triggering box.
    Here you can see our moving door in action:
     

    To be fair, this case study is a bit over-simplified in order to provide an example that can be easily understood. The real version of this door (which will be shown in the next part of this series) is a bit more advanced, but its core principles are exactly the same.

    Wrap-Up
    So far, we’ve covered the structure of variables, functions, events, as well as a common gameplay element like a sliding door. In the part two of this tutorial series, we’ll learn some more advanced blueprint features, such as class recognition, level blueprints and blueprint communication.
    Thanks for reading!
  11. Like
    esspho reacted to Thrik for an article, A MapCore and RunThinkShootLive Mapping Challenge   
    The theme of the contest is quite wonderful and should appeal to all MapCorians whether you're participating or observing, and there are some lovely prizes on offer too. You'll find out more when the challenge is announced and kicked off in a week's time.

    Stay tuned — we hope to see you involved!
×
×
  • Create New...